The building blocks of the Sharpe ratio—expected returns and volatilities—are unknown quantities that must be estimated statistically and are, therefore, subject to estimation error. This raises the natural question: How accurately are Sharpe ratios measured? To address this question, I derive explicit expressions for the statistical distribution of the Sharpe ratio using standard asymptotic theory under several sets of assumptions for the return-generating process—independently and identically distributed returns, stationary returns, and with time aggregation. I show that monthly Sharpe ratios cannot be annualized by multiplying by √12 except under very special circumstances, and I derive the correct method of conversion in the general case of stationary returns. In an illustrative empirical example of mutual funds and hedge funds, I find that the annual Sharpe ratio for a hedge fund can be overstated by as much as 65 percent because of the presence of serial correlation in monthly returns, and once this serial correlation is properly taken into account, the rankings of hedge funds based on Sharpe ratios can change dramatically.

Author Information

Andrew W. Lo is Harris & Harris Group Professor at the Sloan School of Management, Massachusetts Institute of Technology, Cambridge, and chief scientific officer for AlphaSimplex Group, LLC, Cambridge.

Related Topics

Users who read this article also read

Rate and Share